Journal of Pharmaceutical and Biomedical Sciences

Exploring the Potential Targets Underlying the Antiviral Effect of Lonicera Japonica in H5N1 Using Network Pharmacology

Huang Huibin

Abstract


Objective: The mechanisms underlying the antiviral effect of Lonicera japonica (LJ) in H5N1 were examined using a systematic network pharmacology approach.

Methods: Targets related to LJ were searched through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Proteins related to H5N1 were screened in GeneCards database. The active ingredient-target network and protein-protein interaction (PPI) network were plotted by String database.

Results: Totally 23 active components of LJ were screened out, which corresponded to 386 targets. 162 target genes directly related to H5N1 were screened from the GeneCards database. PPI results indicated that the core proteins were Caspase-8 (CASP8) Albumin (ALB), Caspase-7 (CASP7) Epidermal growth factor receptor (EGFR), Interleukin-6 (IL6), Proliferating cell nuclear antigen (PCNA), Nuclear factor erythroid 2-related factor 2 (NFE2L2) and C-reactive protein (CRP).

Conclusion: Collectively, this study highlights that LJ prescription exerted the effect of antiviral through multiple targets and multiple pathways

Keywords


Lonicera Japonica, C-reactive protein, Antiviral

Full Text:

References


Zhou F, Hansen L, Pedersen G, Grødeland G, Cox R. Matrix M Adjuvanted H5N1 Vaccine Elicits Broadly Neutralizing Antibodies and Neuraminidase Inhibiting Antibodies in Humans That Correlate With In Vivo Protection. Front Immunol. 2021 Nov 23;12:747774. doi: 10.3389/fimmu.2021.747774.

Ke X, Yao Z, Tang Y, Yang M, Li Y, Yang G, Chen J, Chen G, Feng W, Zheng H, Chen Q. Highly Pathogenic Avian Influenza A (H5N1) Virus in Swans, Central China, 2021. Microbiol Spectr. 2022 Oct 26;10(5):e0231522. doi: 10.1128/spectrum.02315-22.

Makalo MRJ, Dundon WG, Settypalli TBK, Datta S, Lamien CE, Cattoli G, Phalatsi MS, Lepheana RJ, Matlali M, Mahloane RG, Molomo M, Mphaka PC. Highly pathogenic avian influenza (A/H5N1) virus outbreaks in Lesotho, May 2021. Emerg Microbes Infect. 2022 Dec;11(1):757-760. doi: 10.1080/22221751.2022.2043729.

Penaloza JA, Belser JA, Brock N, Thakur PB, Tumpey TM, Maines TR. Pathogenesis and Transmissibility of North American Highly Pathogenic Avian Influenza A(H5N1) Virus in Ferrets. Emerg Infect Dis. 2022 Sep;28(9):1913-1915. doi: 10.3201/eid2809.220879.

Liu C, Yin Z, Feng T, Zhang M, Zhou Z, Zhou Y. An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury. J Ethnopharmacol. 2021 Jan 10;264:113364. doi: 10.1016/j.jep.2020.113364.

Zhao Y, Tang Z, Nan X, Sun F, Jiang L, Xiong B. Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows. Asian-Australas J Anim Sci. 2020 Jul;33(7):1096-1102. doi: 10.5713/ajas.19.0388.

He H, Zhang D, Gao J, Andersen TR, Mou Z. Identification and evaluation of Lonicera japonica flos introduced to the Hailuogou area based on ITS sequences and active compounds. PeerJ. 2019 Sep 3;7:e7636. doi: 10.7717/peerj.7636.

Yang B, Zhong Z, Wang T, Ou Y, Tian J, Komatsu S, Zhang L. Integrative omics of Lonicera japonica Thunb. Flower development unravels molecular changes regulating secondary metabolites. J Proteomics. 2019 Sep 30;208:103470. doi: 10.1016/j.jprot.2019.103470.

Tang X, Liu X, Zhong J, Fang R. Potential Application of Lonicera japonica Extracts in Animal Production: From the Perspective of Intestinal Health. Front Microbiol. 2021 Aug 9;12:719877. doi: 10.3389/fmicb.2021.719877.

Zhou X, He G, Ma J, Tang M, Tian G, Gong X, Zhang H, Kui L. Protective Effect of a Novel Polysaccharide from Lonicera japonica on Cardiomyocytes of Mice Injured by Hydrogen Peroxide. Biomed Res Int. 2020 Jun 23;2020:5279193. doi: 10.1155/2020/5279193.

Wang T, Yang B, Guan Q, et al. Transcriptional regulation of lonicera japonica thunb. During flower development as revealed by comprehensive analysis of transcription factors. BMC Plant Biol, 2019, 19(1): 198.

Kang P, Wu Z, Zhong Y, Wang Z, Zhou C, Huo S, Guo H, Li S, Xu K, Liu L, Chen S, Tang H, Wang H. A Network Pharmacology and Molecular Docking Strategy to Explore Potential Targets and Mechanisms Underlying the Effect of Curcumin on Osteonecrosis of the Femoral Head in Systemic Lupus Erythematosus. Biomed Res Int. 2021 Sep 13;2021:5538643. doi: 10.1155/2021/5538643.

Wang Y, Yang SH, Zhong K, Jiang T, Zhang M, Kwan HY, Su T. Network Pharmacology-Based Strategy for the Investigation of the Anti-Obesity Effects of an Ethanolic Extract of Zanthoxylum bungeanum Maxim. Front Pharmacol. 2020 Nov 13;11:572387. doi: 10.3389/fphar.2020.572387.

Dong Y, Zhao Q, Wang Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy[J]. Sci Rep, 2021, 11(1): 19496.

Guo X, Yu X, Zheng B, Zhang L, Zhang F, Zhang Y, Li J, Pu G, Zhang L, Wu H. Network Pharmacology-Based Identification of Potential Targets of Lonicerae japonicae Flos Acting on Anti-Inflammatory Effects. Biomed Res Int. 2021 Sep 20;2021:5507003. doi: 10.1155/2021/5507003.

Zhang J, Zhou Y, Ma Z. Multi-target mechanism of Tripteryguim wilfordii Hook for treatment of ankylosing spondylitis based on network pharmacology and molecular docking. Ann Med. 2021 Dec;53(1):1090-1098. doi: 10.1080/07853890.2021.1918345.

Li X, Zhang Y, Wang N, Yuan Z, Chen X, Chen Q, Deng H, Tong X, Chen H, Duan Y, Wei Y. CircRNA.0007127 triggers apoptosis through the miR-513a-5p/CASP8 axis in K-562 cells. J Zhejiang Univ Sci B. 2022 Sept 15;23(9):732-746. doi: 10.1631/jzus.B2200048.

Shi W, Wang Y, Zhao X, Yu T, Li T. CRP/Albumin Has a Promising Prospect as a New Biomarker for the Diagnosis of Periprosthetic Joint Infection. Infect Drug Resist. 2021 Dec 6;14:5145-5151. doi: 10.2147/IDR.S342652.

Jin K, Shen G. Caspase-7 and acid sphingomyelinase: partner repairmans of gasdermin and perforin pores. Signal Transduct Target Ther. 2022 Aug 22;7(1):293. doi: 10.1038/s41392-022-01144-2.

Heidi M. Haikala HM, Lopez T, Köhler J, Eser PO, Xu M, Zeng Q, Teceno TJ, Ngo K, Zhao Y, Ivanova EV, Bertram AA, Leeper BA, Chambers ES, Adeni AE, Taus LJ, Kuraguchi M, Kirschmeier PT, Yu C, Shiose Y, Kamai Y, Qiu Y, Paweletz CP, Gokhale PC, Jänne PA. EGFR Inhibition Enhances the Cellular Uptake and Antitumor-Activity of the HER3 Antibody-Drug Conjugate HER3-DXd. Cancer Res. 2022 Jan 1;82(1):130-141. doi: 10.1158/0008-5472.CAN-21-2426.

Zeng X, Li X, Zhang Y, Cao C, Zhou Q. IL6 Induces mtDNA Leakage to Affect the Immune Escape of Endometrial Carcinoma via cGAS-STING. J Immunol Res. 2022 Jun 2;2022:3815853. doi: 10.1155/2022/3815853.

Arbel M, Choudhary K, Tfilin O, Kupiec M. PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel). 2021 Nov 18;12(11):1812. doi: 10.3390/genes12111812.

Wang L, Wu R, Sargsyan D, Su S, Kuo HC, Li S, Chou P, Sarwar MS, Phadnis A, Wang Y, Su X, Kong AN. Nfe2l2 Regulates Metabolic Rewiring and Epigenetic Reprogramming in Mediating Cancer Protective Effect by Fucoxanthin. AAPS J. 2022 Jan 18;24(1):30. doi: 10.1208/s12248-022-00679-0.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Pharmaceutical and Biomedical Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.