Insight Mechanical Engineering

A Review on Solid State Hydrogen Storage Material

Prabhukhot Prachi R, Wagh Mahesh M, Gangal Aneesh C

Abstract


Hydrogen fuel provided via green method is renewable and environmentally friendly. However, the lack of practical storage
methods has restricted its use to such an extent that hydrogen storage is currently a crucial obstacle in the development
of a hydrogen economy. For mobile applications hydrogen storage system needs to be lightweight and compact. Current technologies such as compressed gas or liquefied hydrogen have severe disadvantages especially in volumetric terms compared to fossil fuels and the storage of hydrogen in light weight solids could be the solution to further enhances the
energy density of hydrogen tanks.
This article reveals overview of novel solid hydrogen storage materials, highlighting their main advantages and drawbacks.

Keywords


solid state hydrogen storage, hydrides, nanoparticles, hydrogen sorption properties

Full Text:

References


Hirsher M. Handbook of hydrogen storage: New materials for future Energy Storage. Weinheim: WILLEY-VCH Verlag GmbH & Co. KGaA, 2009.

Gupta RB. Hydrogen fuel: Production, transport and storage. Boca Raton: CRC Press, 2008.

Vishwanathan B, Scibioh MA. Fuel Cells. Hyderabad: University Press, 2006.

Dillon AC, Jones KM, Bekkedahl TA, Kiange CH, Bethune DS, Heben MJ. 1997. Storage of hydrogen in single-walled carbon nanotubes. Nature, Vol. 386, pp. 377–379.

Chambers A, Park CR, Baker RT, Rodriguez NM. 1998. Hydrogen storage in graphite nanofibers. J. Phys. Chem. B, Vol. 102, pp. 4253–4256.

Zuttel A. 2004. Hydrogen storage methods. Naturwissenschaften, Vol. 91, pp. 157–172.

KOwalczyk P, Holyst R, Terrones M, Terrones H. 2007. Hydrogen Storage in nanoporous carbon materials: myth and facts. Phys. Chem. Phys, Vol. 9, pp. 1786–1792.

Schimmel HG, Kearley GJ, Nijkamp MG, Visser C, Jong K, Mudler FM. 2003. Hydrogen adsorption in carbon nanostructures: composition of nanotubes, fibers, and coals. Chem. Eur. J, Vol. 9, pp. 4764–4770.

Strobe R, Garche J, Moseley PT, Jorisen L, Wolf G. 2006. Hydrogen storage by carbon materials. J. Power Sources, Vol. 159, pp. 781–801.

Zhou L, Zhou Y P, Sun Y. 2004. Enhanced storage of hydrogen at the temperature of liquid nitrogen. Int. J. Hydrogen Energy, Vol. 29, pp. 319–322.

Yang Z, Xia Y, Mokaya R. 2007. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J.Am. Chem. Soc., Vol. 129, pp. 1673–1679.

Kabbour H, Baumann TF, Satcher JH, Sauliner A, Ahn CC. 2006. Toward new candidates for hydrogen storage: high-surfacearea carbon aerogels. Che. Mater., Vol. 18, pp. 6085–6087.

Zuttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L. 2002. Hydrogen storage in carbon nanostructures. Int. J. Hydrogen Energy, Vol. 27, pp. 203–212.

Shaijumona MM, Bejoy N, Ramaprabhu S. 2005. Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties. Appl. Surf. Sci., Vol. 242, pp. 192–198.

Jun Jie Niu, Jian Nong Wang, Ying Jiang, Lian Feng Su, Jie Ma. 2007. An approach to carbon nanotubes with high surface area and large pore volume. Microporous and Mesoporous Materials, Vol. 100, pp. 1–5.

Sankarana M, Viswanathana B, Murthy SS. 2008. Boron substituted carbon nanotubes - How appropriate are they for hydrogen storage? Int J Hydrogen Energy, Vol. 33, pp. 393–403.

Sami-ullah Rather, Renju Zacharia, Sang Woon Hwang, Mehrajud-din Naik and Kee Suk Nahm. 2007. Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method. Chemical Physics Letters, Vol. 441, pp. 393–403.

Ye SH, Gao XP, Liu J, Wang WH, Yuan HT, Song DY, Zhang Y S. 1999. Characteristics of mixed hydrogen storage electrode. J. Alloys Compd., Vol. 292, pp. 191–193.

Zubizarreta L, Arenillas A, Pis JJ. 2009. Carbon materials for H2 st orage. Int. J. Hydrogen Energy, Vol. 34, pp. 4574–4581.

Luxembourg D, Flamant G, Beche E, Sans J, Girala J, Goetz V. 2007. Hydrogen storage capacity at high pressure of raw and purified single wall carbon nanotubes produced with a solar reactor. Int J Hydrogen Energy, Vol. 32, pp. 1016–1023.

Ning GQ, Wei F, Luo G H, Wang QX, Wu YL, Yu H. 2004. Hydrogen storage in multi-wall carbon nanotubes using samples up to 85 g. Appl. Phys. A, Vol. 78, pp. 955–959.

Weitkamp J, Fritz M, Ernst S. 1995. Zeolites as media for hydrogen storage. Int. J. Hydrogen Energy, Vol. 20, pp. 967–970.

Langmi HM, Walton A, AL-Mamouri MM, Johnson S R, Book D, Speight J D, Edwards PP, Gameson I, Anderson PA, Harris IR. 2003. Hydrogen adsorption in zeolites A, X, Y and RHO. J. Alloys Comp., Vols. 3560357, pp. 710–715.

Harris I R, Walton A, AL-Mamouri M M, Johnson S R, Book D, Speight J D, et al. 2005. Hydrogen storage in ion-exchanged zeolites. J. Alloys Compd. Vols. 404-406, pp. 637–642.

Vitillo J G, Ricchiardi G, Spoto G, Zecchina A. 2005. Theoretical maximal storage of hydrogen in zeolitec frameworks. Phys. Chem. Chem. Phys., Vol. 7, pp. 3948–3954.

Rameirez-Cuesta AJ, Mitchell PCH, Ross DK, Georgiev PA, Anderson PA, Langmi HW, Book D. 2007. Dihydrogen in cationsubstituted zeolites X-an inelastic neutron scattering study. J. Mater. Chem., Vol. 17, pp. 2533–2539.

Roswell JLC, Millward AR, Park KS, Yaghi OM. 2004. hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc. Vol. 126, pp. 5666–5667.

Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. 1999, Design and synthesis of an exceptionally stable and highly porous metalorganic framework. Nature, Vol. 402, pp. 276–279.

Panella B, Hirscher M, P€utter H, M€uller U. 2006. Hydrogen Adsorption in Metal-Organic Frameworks: Cu-MOFs and Zn- MOFs Compared. Adv. Funct. Mater., Vol. 16, pp. 520–524.

Kaye SS, Daily A, Yaghi OM, Long, JR. 2007. Impact of Preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc., Vol. 129, pp. 14176–14177.

Eddaoudi M, Kim J, Rosi N, Vodak D, Watcher J, O’Keeffe M, Yaghi O. 2002. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, Vol. 295, pp. 469–472.

Muller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J. 2006. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem., Vol. 16, pp. 626–636.

Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, Keeffe MO, Yaghi OM. 2004. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, Vol. 427, pp. 523–527.

Wong-Foy AG, Matzger AJ, Yaghi OM. 2006. Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc., Vol. 128, pp. 3494–3495.

Furukawa H, Miller MA, Yaghi OM. 2007. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem., Vol. 17, pp. 3197–3204.

Lin X, Jia JH, Zhao XB, Thomas KM, Blake AJ, Walker GS, Champness NR, et al. 2006, High H2 adsorption by coordination- framework materials. Angew. Chem. Int. Ed., Vol. 45, pp. 7358–7364.

Fetcenko MA, Ovshinsky SR, Reichman B. et al. 2007, J. Power Sources, 165, 544.

Bauerlein P, Antonius C, Loffler J, et al., 2008. J. Power Sources, 176(2), 547.

Wang XH, Bei YY, Song XC. et al. 2007. Int. J. Hydrogen Energy, 32(16), 4011.

Warren DE, Faughnan KA, Fellows RA. et al., 1984. J. Lesscommon Met., 104, 375.

Sandrock G, Bowman RC. 2003. J. Alloy. Compd. 356–357, 794.

Fruchart D, Baccmann M, de Rango P. et al., 1997. J. Alloy. Compd., 253–254, 121.

Reilly JJ, 1979. Z. Phys. Chem. N. F., 117, 155.

Schlapbach L, Anderson I, Burger JP. 1994. Hydrogen in metals, in Electronic and magnetic Properties of Metals and Ceramics Part II, Vol. 3B (ed. K.H>Jurgen Buschow), VCH, Weinheim, p. 271.

Ivey DG, Northwood DO. 1983. J. Mater Sci., 18(2), 321.

Zaluska A, Zaluski L, Strom-Oslen JO. 2001. Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A, Vol. 72, pp.157–165.

Imamura H, Masanari K, Kusuhara M, Katsumoto H, Sumi T, Sakata Y. 2005. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball milling. J Alloys Compds, Vol. 86, pp. 211–216.

Zaluski L, Zalluska A, Strom-Olsen JO. 1997. Nanocrystalline metal hydrides. J Alloys Compds, Vols. 253–254, pp. 70–79.

Zhu M, Wang H, Ouyang LZ, Zeng MQ, 2006. Composite structure and hydrogen storage properties in Mg-based alloys. Int J Hydrogen Energy, Vol. 31, pp. 251–257.

Sakintuna B, Darkim F L, Hirscher M. 2007. Metal hydride material for solid hydrogen storage: a review. Int. J. of Hydrogen Energy, Vol. 32, pp. 1121–1140.

Xiaochun X, Chaunsan S. 2006. Improving hydrogen storage/ release properties of magnesium with nano-sized metal catalyst measured by tapered element oscillating microbalance. Appl. Catal., A, Vol. 300, pp. 130–138.

Polanski M, Bystrzycki J, Plocinski T. 2008. The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH2) without and with Cr2O3 nanoparticles. Int. J. of Hydrogen Energy, Vol. 33, pp. 1859–1867.

Vijay R, Sundaresan R, Maiya MP, Murthy SS. 2007, Application of nanostructured Mg-x wt% MmNi5 (x=10-70) composites in a hydrogen storage device. Int. J. Hydrogen Energy, Vol. 32, pp. 2390–2399.

Gennari FC, Esquivel MR. 2008, Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni. Journal of Alloys and Compounds, Vol. 459, pp. 425–432.

Kusadome Y, Ikeda K, Nakamori Y, Orimo S, Horita Z. 2007. Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scripta Materialia, Vol. 57, pp. 751–753.

Shao H, Xu H, Wang Y, Li X. 2004. Synthesis and hydrogen storage behavior of Mg-Co-H system at nanometer scale. J. Solid State Chem., Vol. 177, pp. 3626–3632.

Demircan A, Demiralp M, Kaplan Y, Mat MD, Veziroglu TN. 2005. Experimental and theoretical analysis of hydrogen absorption in LaNi5-H2 reactors. Int J Hydrogen Energy, Vol. 30, pp. 1437–1446.

Muthukumar P. Prakash MM, Murthy SS. 2005. Experiments on a metal hydride based hydrogen storage device. Int. J. Hydrogen Energy, Vol. 30, pp. 1569–1581.

Zaluski L, Zaluska A, Tessier P, Stron-Olsen J O, Schulz R. 1995. Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling. J Alloys Compds, Vol. 227, pp. 53–57.


Refbacks

  • There are currently no refbacks.